

Staffa Dual Displacement Hydraulic Motor

CO	NTENTS Page
1.	General Description2
2.	Functional Symbols2
3.	Model Code3
	Performance Data: Motor selection 4 Rating definitions 4 Output torques 5 Bearing life 6 Volumetric efficiency 6
5.	Circuit and Application Notes: Displacement selection
6.	.,
7.	Temperature Limits8
8.	Filtration8
9.	Noise Levels8
10.	Polar Moment of Inertia8
11.	Mass 8
	Installation Data: General
10.	motanation bimonolono9 to 11

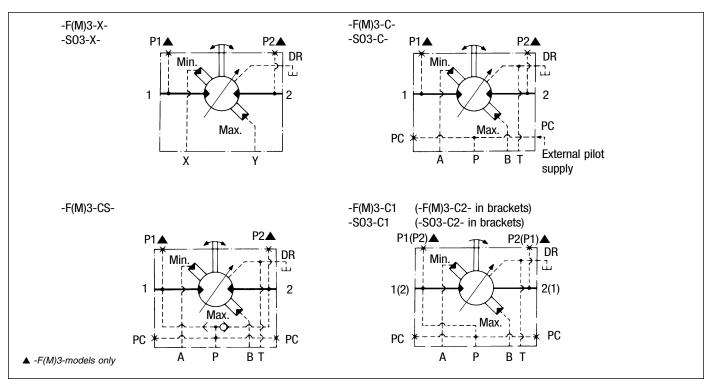
1. GENERAL DESCRIPTION

Kawasaki "Staffa" high torque, low speed radial piston motors use hydrostatic balancing techniques to achieve high efficiency, combined with good breakout torque and smooth running capability.

The HMC series dual displacement models have two pre-set displacements which can be chosen from a wide range to suit specific application requirements. The displacements are hydraulically selected by a directional control valve which can be remote from, or mounted directly on, the motor. Displacements can be changed when the motor is running.

The range of HMC motors extends from the HMC010 of 202 cm³ (12.3 in³) to the HMC325 of 5330 cm³ (325 in³) displacement.

These motors are also available in a continuously variable version using either hydro-mechanical or electrohydraulic control methods.


Other mounting options are available on request to match many of the competitor interfaces.

The HMC125 is one of 8 frame sizes and is capable of developing torques up to 8240 Nm (6080 lbf ft) with a continuous output power of 104 kW (140 hp).

The Kawasaki "Staffa" range also includes fixed displacement motors, plus matching brakes and gearboxes to extend the torque range.

2. FUNCTIONAL SYMBOLS

All model types with variants in model code positions **6** & **7**.

3. MODEL CODE

Features shown in brackets () may be left blank according to requirements. All other features must be specified.

(F**)-HM(*)C125-**-**-**-**-(T*)-30-(PL**)

1 2 3 4 5 6 7 8 9 10

1 FLUID TYPE

Blank = Petroleum oil

F3 = Phosphate ester (HFD fluid) F11 = Water-based fluids (HFA, HFB & HFC)

2 MODEL TYPE

Blank = Standard ("HMC")

M = To NCB (UK) specification 463/1981 ("HMMC")

3 SHAFT TYPE

P* = Cylindrical shaft with parallel key

 S^* = Cylindrical, 20 splines to BS 3550

Q2* = Female, 34 splines to BS 3550

 Z^* = Cylindrical shaft to DIN 5480 (W85 x 3 x 7h)

4 HIGH DISPLACEMENT CODE

100, 110, 120, 125 in³

5 LOW DISPLACEMENT CODE

05, and 10 to 100 in³ in 10 in³ steps

6 MAIN PORT CONNECTIONS

S03 = 6-bolt (UNF) flange: 3" valve (Staffa original valve housing)

F3 = SAE 1¹/₄" 4-bolt (UNC) flanges: 3" valve.

FM3 = SAE 1¹/₄" 4-bolt (metric) flanges: 3" valve.

7 DISPLACEMENT CONTROL PORTS (AND SHUTTLE VALVE)

Threaded ports/bi-directional shaft rotation:

 $X = X \text{ and } Y \text{ ports } G^{1/4}$ " (BSPF to ISO 228/1)

ISO 4401 size 03 mounting face/bi-directional shaft rotation:

C = No shuttle valve CS■ = With shuttle valve

ISO 4401 size 03 mounting face/uni-directional shaft rotation (viewed on shaft end):

C1 = Control pressure from main port 1 (shaft rotation clockwise with flow into port 1)

C2 = Control pressure from main port 2 (shaft rotation counter-clockwise with flow into port 2)

■ Not available with "S03" type main port connections 6

8 TACHO/ENCODER DRIVE

T = Staffa original tacho drive

T1 = Suitable for Hohner 3000 series encoders. (Encoder to be ordered separately)
Omit if not required.

9 DESIGN NUMBER, 30 SERIES

Subject to change. Installation and performance details remain unaltered for design numbers 30 to 39 inclusive.

10 SPECIAL FEATURES

PL** = non-catalogued features,

e.g.:
High pressure shaft seals
Alternative port connections
Stainless steel shaft sleeves
Alternative encoder and tacho drives
Motor valve housing orientation
Shaft variants
Special paint

For installations where shaft is vertically upwards specify "V" after shaft type letter to ensure that additional high level drain port is provided.

^{**} Number assigned as required to specific customer build.

4. PERFORMANCE DATA

Performance data is valid for Staffa HMC125 motors fully run in and operating with petroleum oil. Leakage values are at fluid viscosity of 50 cSt (232 SUS).

MOTOR SELECTION

Use table 1 to select appropriate displacements for each application.

Refer to table 2 for pressure and speed limits when using fire-resistant fluids.

TABLE 1

Displacement code (Model code position		125	120	110	100	90	80	70	60	50	40	30	20	10	05
Displacement volume/r	cm ³ in ³	2048 125	1966 120	1802 110	1639 100	1475 90	1311 80	1147 70	983 60	819 50	655 40	492 30	328 20	164 10	82 5
Average actual running torque	Nm/bar lbf ft/psi	29,9 1.52	28,7 1.46	26,3 1.34	23,6 1.20	21,0 1.07	18,3 0.93	15,7 0.80	12,8 0.65	10,6 0.54	8,1 0.41	5,9 0.30	3,1 0.16	0,6 0.03	0
Max. continuous speed	r/min	190	195	210	235	260	295	340	390	440	540	600	600	600	1000
Max. continuous output	kW hp	104 140	101 136	94 127	88 118	81 109	75 100	68 92	62 83	55 74	48 64	37 50	19 26	4 5	0
Max. intermittent output	kW hp	125 168	122 164	116 156	112 150	106 142	100 134	93 125	86 115	77 103	67 90	52 70	33 45	6 8	0
Max. continuous pressure	bar psi	250 3626	250 3626	250 3626	250 3626	250 3626	17 ♦ 250 ♦								
Max. intermittent pressure	bar psi	275 4000	275 4000	275 4000	275 4000	275 4000	17 ♦ 250 ♦								

^{*} Intermediate displacements are made available to special order.

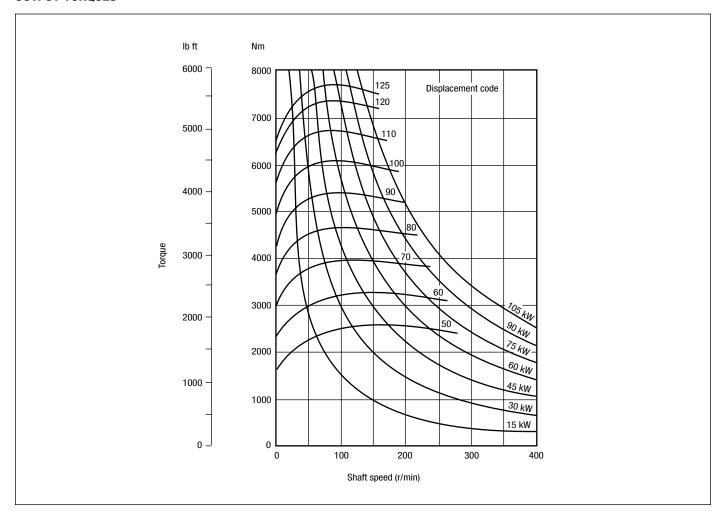
TABLE 2

Fluid type	Pressure, bar Continuous	r (psi) Intermittent	Max. speed r/min
HFA, 5/95% oil-in-water emulsion	103 (1500)	138 (2000)	50% of limits for petroleum oil
HFB, 60/40% water-in-oil emulsion	138 (2000)	172 (2500)	As for petroleum oil
HFC, water glycol	103 (1500)	138 (2000)	50% of limits for petroleum oil
HFD, phosphate ester	250 (3626)	275 (4000)	As for petroleum oil

RATING DEFINITIONS

CONTINUOUS RATING

For continuous duty the motor must be operating within each of the maximum values for speed, pressure and power as specified for each displacement code.

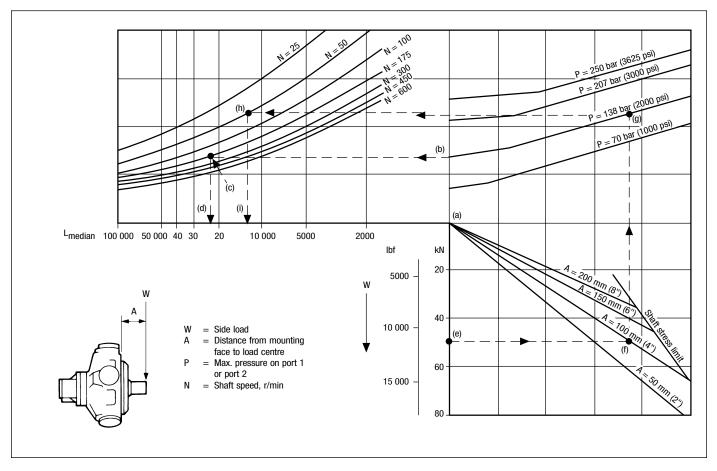

• INTERMITTENT RATING

Operation within the intermittent power rating (up to the maximum continuous speed) is permitted on a 15% duty basis, for periods up to 5 minutes maximum.

- INTERMITTENT MAX. PRESSURE Up to 275 bar (4000 psi) is allowable on the following basis:
- (a) Up to 50 r/min: 15% duty for periods up to 5 minutes maximum.
- (b) Over 50 r/min: 2% duty for periods up to 30 seconds maximum.

[◆] See "Small displacements" page 7 for information about higher pressure applications.

OUTPUT TORQUES


The torque curves indicate, for each displacement, the maximum output torque of the motor with an inlet pressure of 250 bar (3626 psi) and zero output pressure. High return line pressures will reduce the torque for any given pressure differential.

The solid line portion of each curve indicates the levels of maximum torque and speed that are permitted on a "continuous" basis.

The dotted portion of each curve indicates the levels of torque and speed at which the motor can operate at an "intermittent" rating.

The starting torques shown on the graph are average and will vary with crankshaft angle.

BEARING LIFE

The nomograph allows the median **bearing** life to be determined for conditions of:

- 1. No side load and no axial thrust
- 2. Side load and no axial thrust
- ▲ To determine L10 life predictions per ISO 281-1-1977 multiply the median figure by 0.2.

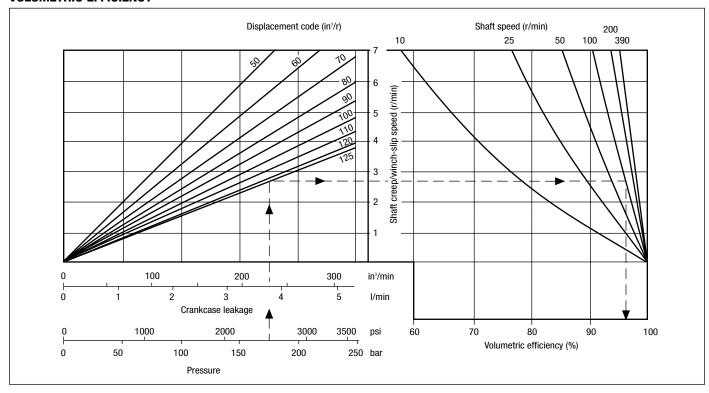
For more precise life prediction, or where axial thrusts are incurred, a computer analysis can be provided by Kawasaki on receipt of machine duty cycle.

	HMC125
Example 1 (follow chain dotted line):	
Side load (W)	a) 0
System pressure (P)	b) 138 bar (2000 psi)
Speed (N)	c) 175 r/min
Median bearing life	d) 22 000 hrs
L10 bearing rating = median $x = 0.2$	4400 hrs
Example 2 (follow chain dotted line):	
Side load (W)	e) 50 kN (11 240 lbf)
Load offset (A) from motor mounting face	f) 100 mm (4.0 in)
System pressure (P)	g) 138 bar (2000 psi)
Speed (N)	h) 50 r/min
Median bearing life	i) 12 000 hrs
L10 bearing rating = median $x 0.2$	2400 hrs

SHAFT STRESS LIMIT

The shaft stress limit in the nomograph is based on the fatigue rating of the shaft. Infrequent loading above these limits may be permitted; consult Kawasaki.

VOLUMETRIC EFFICIENCY


The nomograph on page 7 enables the average volumetric efficiency, crankcase (drain) leakage and "winch slip"/shaft creep speed to be estimated.

Example (follow chain dotted line): Given:

1. Pressure175 I 2. Displacement code 3. Speed	125 (in ³ /r)
To obtain:	
4. Volumetric efficiency	96.0%
5. Crankcase leakage	3,7 l/min
	(230 in ³ /min)
6. Shaft creep speed	2.6 r/min

The shaft creep speed occurs when the load attempts to rotate the motor against closed ports as may occur, for example, in winch applications.

VOLUMETRIC EFFICIENCY

5. CIRCUIT AND APPLICATION NOTES

DISPLACEMENT SELECTION

To select either displacement, a pressure at least equal to 2/3 of the motor inlet/outlet pressure (whichever is higher) is required. In most applications the motor inlet pressure will be used.

For inlet/outlet pressures below 3,5 bar (50 psi) a minimum control pressure of 3,5 bar (50 psi) is required. In the event of loss of control pressure the motor will shift to its highest displacement.

For rapid reversing applications it is recommended to externally source the control oil supply direct from the system pump (use displacement control type "X" or "C" - not "CS", "C1" or "C2" - in model code position **7**).

STARTING TORQUES

The starting torques shown on the graph on page 5 are average and will vary with system parameters. For motors with low displacement below 50 in³ and starting under load it is recommended to select high displacement for start-up.

LOW SPEED OPERATION

(High displacement mode)
Minimum operating speeds are

determined by load conditions (load inertia, drive elasticity, etc.) For operation at speeds below 3 r/min consult Kawasaki.

SMALL DISPLACEMENTS

(5 in³ and below)

The pressures given in the table on page 4 for displacement code "05" (and below) are based on 1000 r/min output shaft speed. These pressures can be increased for shaft speeds less than 1000 r/min; consult Kawasaki for details.

In addition to 5 in³, a zero swept volume displacement (for free wheeling requirements) is available on request, subject to Kawasaki approving the application.

HIGH BACK PRESSURE

When both inlet and outlet ports are pressurized continuously, the lower pressure in one port must not exceed 70 bar (1000 psi). Consult Kawasaki on applications beyond this limit. Note that high back pressures reduce the effective torque output of the motor.

BOOST PRESSURE

When operating as a motor the outlet pressure should equal or exceed the crankcase pressure. If pumping occurs

(i.e. overrunning loads) then a positive pressure, "P", is required at the motor ports. Calculate "P" (bar/psi) from the appropriate formula:

P (bar) = 1 +
$$\frac{N^2 \times V^2}{1.6 \times 10^{10}}$$
 + C

Where:

C = crankcase pressure, psi

N = speed, r/min

 $V = displacement, cm^3/r$

P (psi) =
$$14.5 + \frac{N^2 \times V^2}{4.1 \times 10^6} + C$$

Where:

C = crankcase pressure, psi

N = speed, r/min

V = displacement, in³/r

The flow rate of oil needed for the make-up system can be estimated from the crankcase leakage figure (see Volumetric Efficiency graph above) plus an allowance for changing displacement; e.g. to change high to low in 0.5 sec requires 15 l/min (4.0 USgpm).

Allowance should be made for other system losses and also for "fair wear and tear" during the life of the motor, pump and other system components.

COOLING FLOW

Operation within the continuous ratings does not require any additional cooling.

For operating conditions above "continuous", up to the "intermittent" ratings, additional cooling oil may be required. This can be introduced through the spare crankcase drain holes, or in special cases through the valve spool end cap. Consult Kawasaki about such applications.

MOTOR CASING PRESSURE

With the standard shaft seal fitted, the motor casing pressure should not exceed 3,5 bar (50 psi). On installations with long drain lines a relief valve is recommended to prevent over-pressurizing the seal.

Notes:

- The casing pressure at all times must not exceed either the motor inlet or outlet pressure.
- High pressure shaft seals are available to special order for casing pressures of: Continuous: 10 bar (150 psi) Intermittent: 15 bar (225 psi)
- 3. Check installation dimensions (page 9) for maximum crankcase drain fitting depth.

6. HYDRAULIC FLUIDS

Dependent on motor (see Model Code position 1) suitable fluids include:

- Antiwear hydraulic oils.
- Phosphate esters (HFD fluids)
- Water glycols (HFC fluids)■
- 60/40% water-in-oil emulsions (HFB fluids)■
- 5/95% oil-in-water emulsions (HFA fluids) ■
- Reduced pressure and speed limits, see page 4.

Viscosity limits when using any fluid except oil-in-water (5/95) emulsions are:

Max. off load .	2000 cSt (9270 SUS)
Max. on load .	150 cSt (695 SUS)
Optimum	50 cSt (232 SUS)
Minimum	25 cSt (119 SUS)

PETROLEUM OIL RECOMMENDATIONS

The fluid should be a good hydraulic grade, non-detergent petroleum oil. It should contain anti-oxidant, anti-foam and demulsifying additives. It must contain antiwear or EP additives. Automatic transmission fluids and motor oils are not recommended.

7. TEMPERATURE LIMITS

Ambient min.	30°C (-22°F)
Ambient max.	+70°C (158°F)

Max. operating temperature range

	Petroleum oil	Water- containing
Min.	-20°C (-4°F)	+10°C (50°F)
Max.*	+80°C (175°F)	+54°C (130°F)

* To obtain optimum service life from both fluid and hydraulic system components 65°C (150°F) normally is the maximum temperature except for water-containing fluids.

8. FILTRATION

Full flow filtration (open circuit), or full boost flow filtration (closed circuit) to ensure system cleanliness of ISO 4406/1986 code 18/14 or cleaner.

9. NOISE LEVELS

The airborne noise level is less than 66.7 dB(A) DIN (70 dB(A) NFPA) throughout the "continuous" operating envelope.

Where noise is a critical factor, installation resonances can be reduced by isolating the motor by elastomeric means from the structure and the return line installation. Potential return line resonances originating from liquid borne noise can be further attenuated by providing a return line back pressure of 2 to 5 bar (30 to 70 psi).

10. POLAR MOMENT OF INERTIA

Typical data

Displacement code	kg m ²	lb in ²
125	0,20	700
50	0,14	500

11. MASS

Approx. all models: 234 kg (515 lb)

12. INSTALLATION DATA

GENERAL

Spigot

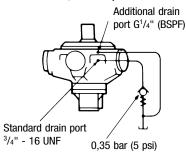
The motor should be located by the mounting spigot on a flat, robust surface using correctly sized bolts. The diametral clearance between the motor spigot and the mounting must not exceed 0,15 mm (0.006"). If the application incurs shock loading, frequent reversing or high speed running, then high tensile bolts should be used, including one fitted bolt.

Bolt torque

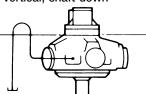
The recommended torque wrench settings for the mounting bolts are: M20407 \pm 14 Nm (300 \pm 10 lbf ft) 3 /4" UNF......393 \pm 14 Nm (290 \pm 10 lbf ft)

Shaft coupling

Where the motor is solidly coupled to a shaft having independent bearings the shafts must be aligned to within 0,13 mm (0.005") TIR.


CRANKCASE DRAIN

Motor axis horizontal


The crankcase drain must be taken from a position above the horizontal centre line of the motor.

Axis vertical, shaft up

An additional G¹/4" (BSPF) drain port in the front mounting flange is provided when the "V" (shaft vertically upwards) designator is given after the shaft type letter in position 3 of the model code. This additional drain should be connected into the main motor casing drain line downstream of a 0,35 bar (5 psi) check valve to ensure lubrication of the upper bearing, see above diagram.

Axis vertical, shaft down

Use any drain position. The drain line should be run above the level of the uppermost bearing; if there is risk of syphoning then a syphon breaker should be fitted.

START-UP

Fill the crankcase with system fluid. Where practical, a short period (30 minutes) of "running in" should be carried out with the motor set to its high displacement (pressure to port Y, or to port B of the size 03 pilot valve).

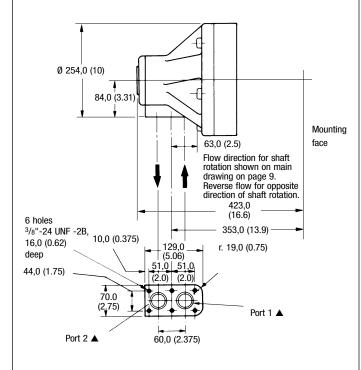
13. INSTALLATION DIMENSIONS IN MM (INCHES)

HMC125 MOTOR WITH TYPE "F3"/"FM3" MAIN PORTS CONNECTION See additional views for: 3rd angle Displacement control connections, all shaft types and alternative main ports connection projection 46,5 (1.83)— -334,0 (13.14) 44,0 (1.75) 30,2 (1.19) 3 drain ports (two normally 37,0 (1.45) plugged) 3/4"-16 UNF-2B with Mounting face Ø 38,0 (1.5 dia) spotface. 58,7 (2.31) Warning: Pipe fittings must not enter ports by more than 12,0 (0.5) from face. 25,4 (1.0) Port 2 33,0 (1.3) 37.0 (1.45) Flow directions for 14,0 (0.6) 30,2 (1.19) shaft rotation shown. Reverse directions Pressure gauge for opposite connection into rotation. each main port; supplied plugged Spigot Ø 380.95/ (see table) 380,87 (14.998/ 14.995 dia) 87,0 (3.42) Ø 254,0 (10.0 dia) Ø 473,0 (18.7 dia) max Ø 559,0 (22.0 dia) See "Displacement ¢ of drains-121,0 See control connections" on "Shaft types" (4.75)page 10 159,0 (6.25)

• Suitable for M20 or 3/4" bolts. Recommended reaming diameter 21,0 (0.83) (for fitted bolt); see "Installation Data".

■ Port connection details

5 holes Ø 20,0 (0.79 dia) equi-spaced as shown on 419,1 (16.50) p.c.d. and spotfaced to Ø 38,0 (1.5 dia)●


Model code 6	Flange	Bolt tappings	Pressure gauge connections
F3	11/4" 3000 series SAE, 4-bolt flange	⁷ / ₁₆ "-14 UNC-2B x 27,0 (1.03) deep	⁹ / ₁₆ "-18 UNF-2B, SAE J475
FM3	11/4" 3000 series SAE, 4-bolt flange	M12-6H x P1.75 x 27,0 (1.03) deep	G ¹ / ₄ " (BSPF)
S03	Staffa 3" 6-bolt flange, see separate view	on next page	

on page 11

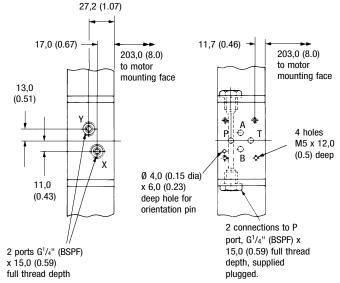
203,0 (8.0)

425,0 (16.75)

3" VALVE HOUSING WITH 6-BOLT FLANGE, "SO3" IN MODEL CODE POSITION 6

▲ Ø28 (1.125 dia), with recess for 31,0 (1.22) i/d x Ø 4 (0.157 dia) section 0-ring

DISPLACEMENT CONTROL CONNECTIONS, MODEL CODE POSITION 7

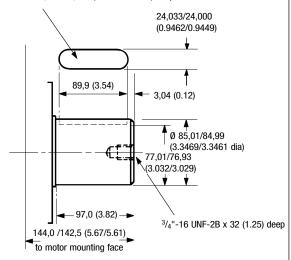

Type X G¹/₄" (BSPF) tapped ports X and Y

Displacement selection (via remotely located valve ◆):

High displacement: P to Y; X to T Low displacement: P to X; Y to T

Types C, CS, C1 and C2
Mounting interface for directional
control valve ◆ to: ISO 4401 size 03
ANSI/B93. 7M size D03

Displacement selection: High displacement: P to B; A to T Low displacement: P to A; B to T

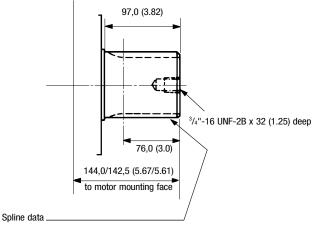


 Displacement selector valve is not supplied with the motor; specify and order separately.

SHAFT TYPE "P", MODEL CODE POSITION 3

Straight shaft with rectangular key

Key supplied: 24,066/24,000 (0.9475/0.9449) wide x 16,052/15,999 (0.6320/0.6299) deep



SHAFT TYPE "S", MODEL CODE POSITION 3

Straight shaft with 20 splines to BS 3550

SHAFT TYPE "Z", MODEL CODE POSITION 3

Straight shaft to DIN 5480

For type S shaft

To BS 3550/SAE J498c (ANSI B92.1-1970, class 5)

Flat root, side fit, class 1

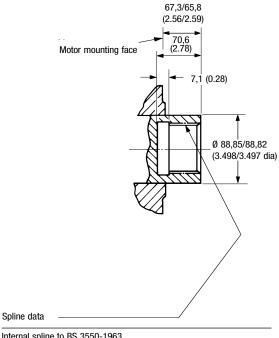
Pressure angle 30° Number of teeth 20 Pitch 6/12

Major diameter 87,953/87,826 (3.4627/3.4577) Form diameter 80,624 (3.1600)

Minor diameter 79,484/78,925 (3.1293/3.1073)

Pin diameter 8,128 (0.3200)

Diameter over pins 97,084/97,031 (3.8222/3.8201)


For type Z shaft

DIN 5480, W85 x 3 x 27 x 7h

SHAFT TYPE "Q", MODEL CODE POSITION 3

Cylindrical, 34 internal splines to BS 3550

Note: The type "Q" shaft will transmit the maximum torques given on page 5. However, customers should ensure that their own mating shaft will transmit the torque required in their application.

Internal spline to BS 3550-1963 Flat root side fit, class 1

Pressure angle 30° Number of teeth 32 Pitch 12/24

Major diameter 70,18/69,85 (2.7680/2.7500) Minor diameter 65,743/65,616 (2.5883/2.5833)

Pin diameter 3,658 (0.1440)
Pin flatted to 3,556 (0.1400)

Diameter between pins 62,619/62,553 (2.4653/2.4627)

Presented by:

Kawasaki Motors Corp., U.S.A. Precision Machinery Division

5080 36th Street S.E., Grand Rapids, MI 49512 • USA (616) 949-6500 • Fax (616) 975-3103

www.kawasakipmd.com

Staffa hydraulic motors are manufactured to the highest quality standards in a Kawasaki ISO 9001 certified facility.
Certification No. 891150